Problem 2.17

A long coaxial cable (Fig. 2.26) carries a uniform volume charge density ρ on the inner cylinder (radius a), and a uniform surface charge density σ on the outer cylindrical shell (radius b). This surface charge is negative and is of just the right magnitude that the cable as a whole is electrically neutral. Find the electric field in each of the following three regions: (i) inside the inner cylinder $(s<a)$, (ii) between the cylinders $(a<s<b)$, (iii) outside the cable $(s>b)$. Plot $|\mathbf{E}|$ as a function of s.

Solution

One of the governing equations for the electric field in vacuum is Gauss's law.

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Normally the curl of \mathbf{E} is also necessary to determine \mathbf{E}, but because of the cylindrical symmetry, the divergence is sufficient. Integrate both sides over the volume of a (black) coaxial cylindrical Gaussian surface with radius s and length L. Three cases need to be considered: one where $s<a$, one where $a<s<b$, and one where $s>b$.

The enclosed charge is the product of the charge density with the volume.

$$
\int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{s} \nabla \cdot \mathbf{E} d V_{0}=\int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{s} \frac{\rho}{\epsilon_{0}} d V_{0}= \begin{cases}\frac{\rho}{\epsilon_{0}} \int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{s} s_{0} d s_{0} d \phi_{0} d z_{0} & \text { if } s<a \\ \frac{\rho}{\epsilon_{0}} \int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{a} s_{0} d s_{0} d \phi_{0} d z_{0} & \text { if } a<s<b \\ 0 & \text { if } s>b\end{cases}
$$

The enclosed charge is zero if $s>b$ because the whole cable is electrically neutral.

Apply the divergence theorem on the left side and evaluate the integrals on the right side.

$$
\left.\int_{0}^{L} \int_{0}^{2 \pi}\left(\mathbf{E} \cdot d \mathbf{S}_{0}\right)\right|_{s_{0}=s}= \begin{cases}\frac{\rho}{\epsilon_{0}}\left(\int_{0}^{L} d z_{0}\right)\left(\int_{0}^{2 \pi} d \phi_{0}\right)\left(\int_{0}^{s} s_{0} d s_{0}\right) & \text { if } s<a \\ \frac{\rho}{\epsilon_{0}}\left(\int_{0}^{L} d z_{0}\right)\left(\int_{0}^{2 \pi} d \phi_{0}\right)\left(\int_{0}^{a} s_{0} d s_{0}\right) & \text { if } a<s<b \\ 0 & \text { if } s>b\end{cases}
$$

Because of the cylindrical symmetry, the electric field is expected to be entirely radial: $\mathbf{E}=E(s) \hat{\mathbf{s}}$. Note also that the direction of $d \mathbf{S}$ is the outward unit vector to the Gaussian surface.

$$
\begin{gathered}
\int_{0}^{L} \int_{0}^{2 \pi}\left[E(s) \hat{\mathbf{s}}_{0}\right] \cdot\left(\hat{\mathbf{s}}_{0} s d \phi_{0} d z_{0}\right)= \begin{cases}\frac{\rho}{\epsilon_{0}}(L)(2 \pi)\left(\frac{s^{2}}{2}\right) & \text { if } s<a \\
\frac{\rho}{\epsilon_{0}}(L)(2 \pi)\left(\frac{a^{2}}{2}\right) & \text { if } a<s<b \\
0 & \text { if } s>b\end{cases} \\
\int_{0}^{L} \int_{0}^{2 \pi} s E(s) d \phi_{0} d z_{0}= \begin{cases}\frac{\pi \rho s^{2} L}{\epsilon_{0}} & \text { if } s<a \\
\frac{\pi \rho a^{2} L}{\epsilon_{0}} & \text { if } a<s<b \\
0 & \text { if } s>b\end{cases} \\
s E(s) \int_{0}^{L} \int_{0}^{2 \pi} d \phi_{0} d z_{0}= \begin{cases}\frac{\pi \rho s^{2} L}{\epsilon_{0}} & \text { if } s<a \\
\frac{\pi \rho a^{2} L}{\epsilon_{0}} & \text { if } a<s<b \\
0 & \text { if } s>b\end{cases} \\
s E(s)(L)(2 \pi)= \begin{cases}\frac{\pi f}{\epsilon_{0}} & \text { if } s<a \\
\frac{\pi \rho s^{2} L}{\epsilon_{0}} & \text { if } a<s<b \\
0 & \text { if } s>b \\
\frac{\pi \rho a^{2} L}{\epsilon_{0}} & \text { if } a<s<b\end{cases} \\
s E(s)\left(\int_{0}^{L} d z_{0}\right)\left(\int_{0}^{2 \pi} d \phi_{0}\right)=b
\end{gathered}
$$

Solve for $E(s)$ by dividing both sides by $2 \pi L s$.

$$
E(s)= \begin{cases}\frac{\rho s}{2 \epsilon_{0}} & \text { if } s<a \\ \frac{\rho a^{2}}{2 \epsilon_{0} s} & \text { if } a<s<b \\ 0 & \text { if } s>b\end{cases}
$$

Therefore, the electric field around the coaxial cable is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\frac{\rho s}{2 \epsilon_{0}} \hat{\mathbf{s}} & \text { if } s<a \\
\frac{\rho a^{2}}{2 \epsilon_{0} s} \hat{\mathbf{s}} & \text { if } a<s<b \\
\mathbf{0} & \text { if } s>b
\end{array} .\right.
$$

Below is a plot of $E(s)=|\mathbf{E}|$ versus s.

