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Problem 2.17

A long coaxial cable (Fig. 2.26) carries a uniform volume charge density ρ on the inner cylinder
(radius a), and a uniform surface charge density σ on the outer cylindrical shell (radius b). This
surface charge is negative and is of just the right magnitude that the cable as a whole is
electrically neutral. Find the electric field in each of the following three regions: (i) inside the
inner cylinder (s < a), (ii) between the cylinders (a < s < b), (iii) outside the cable (s > b). Plot
|E| as a function of s.

Solution

One of the governing equations for the electric field in vacuum is Gauss’s law.

∇ ·E =
ρ

ϵ0
Normally the curl of E is also necessary to determine E, but because of the cylindrical symmetry,
the divergence is sufficient. Integrate both sides over the volume of a (black) coaxial cylindrical
Gaussian surface with radius s and length L. Three cases need to be considered: one where s < a,
one where a < s < b, and one where s > b.

The enclosed charge is the product of the charge density with the volume.
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The enclosed charge is zero if s > b because the whole cable is electrically neutral.
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Apply the divergence theorem on the left side and evaluate the integrals on the right side.
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Because of the cylindrical symmetry, the electric field is expected to be entirely radial:
E = E(s)̂s. Note also that the direction of dS is the outward unit vector to the Gaussian surface.
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Solve for E(s) by dividing both sides by 2πLs.

E(s) =
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Therefore, the electric field around the coaxial cable is

E =
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.

Below is a plot of E(s) = |E| versus s.
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